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Comment on “Symmetric path integrals for stochastic equations with multiplicative noise”
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We recall our approach through discretizations for path integrals and its general results for representations of
probability densities. It is shown that the result of Arngll Arnold, Phys. Rev. B61, 6099 (2000] is a
particular case of our work.
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In Ref. [1] the author comes back to the problem of the—t") and » measures the intensity of the noise. A discretized
determination of path integral representations for some probversion of Eq.(1) is
ability densities. His central result is the Lagrangian in for-
mula(1.13 that corresponds to midpoint discretization. This Aq +ga”(q“) )= \/—o' (q(s) Aw“ v=12,...Nn,
result, which is certainly of interest, is a special case of gen-
eral results obtained by Langouche, Roekaerts, and Tirapegui i=1,2,... (N+1). )
(LRT in what follows in Ref.[2], Sec. 7.61982, where one
can also find references to the original papers of the authors n nsiders the Markov process defined b nd
and to other previous works. We summarize the LRT work(z)(?n ethce)lntefval[to TI; andpw(e isedtie ﬁotai/lo[igﬁto
that concerns the study of Langevin equations of the form B ()
(sum from 1 ton over repeated indices should be understoodﬂLJ =12 NEL) v =T g =0%(Y); andgp®,
from now on =(;_1t+aAq;, where the numbes stands forr orsin Eq.
(2); Ag'=qf —qi_; Awf'=w{'—wj" ;, andw{ =w(t;),
where w*(t) is the Wlener process defmed hyw“/dt
Ta]=Vnoila®I&4t), »=12,...n, =¢X(t). From Eq.(2) and using three different methods
(1) (two of them are used in Refl]) LRT obtained the func-
tional integral representation for the probability density as
where[£"(1), u=1,2, ... n] are Gaussian white noises with the limit P(Q,T|Qq,tg) =In|n_, With [formula (7.83 in
zero mean and correlations(&*(t)£7(t"))=""5(t Ref.[2]]
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where we have definedr,,(q), g,.,(q), and g“"(q), whereL("9)(q,dg/dt) can be read from E3) which is the
through o*,(9)0,.(A)=6,,, 9,..(A)=0,,0,,, 9“'0,, definition of Eq. (4). After using the identityo,d,0,,
=4,,, and one has then that’ o . The path inte- —o0,,d,0",, we have

ﬁ:, _ : pf o ﬁw
gral for P(Q,T|Qo, o) is written formally as Lors| g 99| L OliM+a“( ) dq”+av( )

= L _ (r,s) da”
PQTIQo to)= y(r,S)D \/detgw) exp{ fdt o +S(rypo7,,(r”p( dqt +a7(q))—r<9 a“(q)
dg 1
q,dt”t?[q(T) Qléla(te) = Qol, (4) + 5 08%0,0",,0,0"p. )
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The indexvy(r,s) in Eq. (4) stands for the discretization this last point of view there is nothing “natural” in the mid-
involved in the definition of the path integral that dependspoint discretization(see Ref[8] for a discussion of this spe-
here on two parametefss) and is completely specified by cific point), and this is also the case of perturbation expan-
Eq. (3). The Lagrangian is also labeled withsince it obvi-  sions where the prepoint discretization gives often simpler
ously depends on the discretization, one is using to define thgays of calculatio10].
functional integral[2]. Expression(5) reduces for =s=3 (4) Functional integrals are calculated in most cases of
(midpoint discretizationto the result in Ref[1]. We make jnterest as perturbative expansions. These expansions are not
now several remarks that are important in a paper dealing,e|| defined since the value of some equal time contractions
with discretization problems in path integrals: is not defined2,3,11,12. The solution of this problem is the

(%j) The bMarkov prochess definefd bK_E_qS)hand (I?)kde_ use of the concept of discretization as defined by LRT that
pends ors utznot onr [the reason or this Is the WEII"KNOWN oI5 us how to give definite values to the ambiguous quan-
relation (Aq;)“~0O(e) of diffusion processds This means tities

that when one calculates the functional integral in @&gall (5) Covariant definitions of path integrals, which are not

dependence. in must canc_el. This property can be verified ahased on discretizations, have been proposed by Feynman
each ordgr in a perturbation expansion of E4. (see, Ref. [13,14 and by Grahani15]. However, if one wants to make
[3) an_d figorous res_ults confirming the work of LR.T can be perturbative calculations it follows from the work of LRT
gqund tl'n Ize;‘.[4]. :;I' h'sf Eeanj thag, \tl\flle can Fl)tm: 'CI)I 'Q tr}ﬁ [2,3] that it is necessary to determine the discretization that
|sc(;(.et.|ze| orrg( g'l'? dq. ('t) ar} th eI\/TeSIiJ wiit be 3 corresponds to the Lagrangian appearing in the configuration
conditional probability eni' y of the Markov p()sr)ocess e'space path integrdthe problems of undefined quantities that
fined by Egs.(1),2) W'tT o,(q) discretized inqj=,. We  gnnear in configuration space are solved in Chap. X of Ref.
recall thats=0 ands=3 correspond fo the lto and Sta- [2]). we remark that a related problem, which also leads to a
tonovic interpretation, respectivelgee Ref[5]). Lagrangian, is the determination of the most probable path
(2) The dlgcreuzatlo_n dependence, of functlonal_ integrals¢or 4 diffusion proces§16,17. This Lagrangian, sometimes
was exhaustively studied by LR®ee, Ref[2]) and, in par-  cajied the Onsager-Machlup function, is such that its Euler-
ticular, the relation to the ordering of operatpé$ when one | 5grange equations determine the most probable path and it
introduces an operator formalism as it is done for example ifs known to coincide with the Lagrangian of Graham’s defi-
quantum mechanics. o __nition of path integrals that is different from the Feynman
(3) It is stated in Ref[1] that the midpoint discretization Lagrangian in curved spaces by a fack®, whereR is the
is “natural” since it allows the use of standard calculus in the . ,rvature determined by the metde,(q) defined after Eq.
action. This is true for a term linear in the derivativdg*/dt 3). :
of a pa.th but not in thel domingnt term thag is quadratic .in the (6) The preference for a given discretization can be dic-
derivatives. Once again this is due td;)“~0O(e) thatis  (ated by the simplifications obtained for a given problem:
also related to the fact that nondifferentiable paths haveyis is the case of the exact calculation by LRT of the propa-
probability one. If one looks to point transformations in thegator on the spher&® (Chap. XII of Ref.[2]). It is also
action[L”(q,dg/dt)dt, one immediately concludes that one jmportant to recall that the use of the discretization approach
cannot use the usual rules of calculus in the act®@,8,9  gllowed LRT to calculate for the first time the higher order
and that the transformation must be done in the discrete Veggrrections to the WKB approximation in curved spaces
sion (see, Chap. VI of Refi2] and, especially, Sec. 6.4 for [1g] \we finally point out that the use of Fourier series to
covariant discretizationsOne has in general that a discreti- -5jculate functional integrals as it has been proposed in Ref.

zation associated with a correspondence rule cannot be theg) does not eliminate the discretization problems that just
same before and after a formal change of variables in th%ppear in a different forri20].

path integral, a statement that is a translation of the well-

known result of quantization theory that states that the rela- The authors thank M. Clerc for interesting discussion.
tion between an operator theory and-aumber theory can- They also acknowledge support from project FONDECYT
not be given by one and the same correspondence rule befot®90991 (H.C. and E.T. and from FONDAP 11980002
and after a nonlinear canonical transformation is done. FroniE.T.).
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